
NPC on Solaris HOWTO

Author: Solarpack Project Team

Revision: 1.16

Date: 2003-04-22

This document gives instructions on how to install the NetBSD package collection tools (NPCT) on
a Solaris machine.

The NPC is further documented on its home site, at NetBSD.

Contents

1 Prerequisites

2 Quick start

3 Managing binary packages

4 Notes

4.1 Standard C++ library

4.2 Manual pages

4.3 Non-opensource packages

1 Prerequisites

To install the NPCT on top of a Solaris system, you’ll need to make sure you have the following Sun
packages installed:

package
name

description

SUNWcs[drul] Core Solaris

SUNWscp[ru] Source Compatibility

SUNWxcu4 XCU4 Utilities

SUNWesu Extended System Utilities

SUNWgzip The GNU Zip (gzip) compression utility

Copy/paste the following commands to quickly check this:

pkginfo SUNWcsd SUNWcsr SUNWcsu SUNWcsl
pkginfo SUNWscpr SUNWscpu
pkginfo SUNWxcu4 SUNWesu SUNWgzip

1

http://www.netbsd.org/Documentation/software/packages.html

If you also want to install GUI applications, you’ll probably also need to install the OpenWindows
environment packages – too long to be listed here, but they’ll probably be installed in every default
Solaris configuration.

2 Quick start

NPCT installs in a “sandbox”, located under /usr/pkg (which means you’ll require root access to the
machine you’re installing on).

Download Solarpack’s latest NPC binary kit, available in a .tar.Z tarball form, and unpack the tarball
at the root of your filesystem.

Note

If the binary kit for your specific software/hardware configuration is not present, it is worth trying
to run a kit designed for a later Solaris release (and to tell us how it went). We hope to increase
the number of binary kits available in the future. If no binary kit works for you, you will have to
compile it from source; see the developer HOWTO.

You need to set a few environment variables for proper operation:

PKG TMPDIR: set this to a temporary directory. This directory will be used as a staging area when binary
packages are unpacked, before actually installing them:

PKG TMPDIR=/usr/pkg/tmp; export PKG TMPDIR

Note that PKG TMPDIR defaults to /var/tmp, which you’ll possibly find convenient.

PKG PATH: this is a colon-separated list of where pkg add will look for binary packages.

If you’re going to use the Solarpack’s project binary repository, set it with (e.g.) the following
Bourne shell script snippet:

OS VERSION=‘uname -r‘ # 5.8 for Solaris 8, etc.
OS PLATFORM=‘uname -p‘ # either ’sparc’ or ’i386’
REMOTE DIR="pub/sourceforge/solarpack/direct download"
REMOTE DIR="${REMOTE DIR}/SunOS-${OS VERSION}/${OS PLATFORM}/All"
SERVER="<SERVER>"
PKG PATH="ftp://${SERVER}.dl.sf.net/${REMOTE DIR}"
export PKG PATH

Sample PKG PATH value:

ftp://umn.dl.sf.net/pub/sourceforge/solarpack\
/direct download/SunOS-5.8/sparc/All

Please note that the URL‘‘s in ‘‘PKG PATH should not end with a / character.

Replace <SERVER> with the download server closest to you. The values (mirrors) that are currently
possible for <SERVER> are:

– umn (Minneapolis, MN, USA)

– unc (Chapel Hill, NC, USA)

2

file:download.html
mailto:solarpack-devel@lists.sourceforge.net
file:howto-dev.html

Of course, you can add all of these servers in case one of them is offline. Note that the other
SourceForge mirrors are not usable, since they don’t have an anonymous FTP service.

If you’re going to build packages from source, make sure the first item of PKG PATH is your local
package repository; normally it’s /usr/solarpkgsrc/packages/All. Other items can include
http and ftp resources, but recursive dependency resolution will only be possible with ftp servers.

PATH: prepend /usr/pkg/bin, which will contain the executables of the packages you’ll install. It should
also contain /usr/pkg/X/bin (for X11-based packages). For the super-user root account, you
may also want to add /usr/pkg/sbin to your path because it contains all the management tools
like pkg *:

PATH=/usr/pkg/bin:/usr/pkg/sbin:${PATH}

LD LIBRARY PATH: prefix it by /usr/pkg/lib and /usr/pkg/X/lib:

LD LIBRARY PATH=/usr/pkg/lib:/usr/pkg/X/lib:${LD LIBRARY PATH}

or:

LD LIBRARY PATH=/usr/pkg/lib:/usr/pkg/X/lib
export LD LIBRARY PATH

Now that the environment is set, you’ll learn how to install binary packages in the following section.

3 Managing binary packages

Until the development of our package manager, zounds, enters beta status, the tools that can be used
are the low-level tools provided with Zoularis. These tools have often a similar name as the native SVr4
packaging tools provided by Solaris; but making the difference is easy thanks to the underscore infixed
in their name.

The basic three tools used to manage binary packages are pkg info(1) pkg add(1), and pkg delete(1).
pkg add and pkg delete can only be used by the root user – remember to set the environmental variables
for this user as specified before.

For more information, and uncommon uses, take a look at the manpages.

Common uses:

pkg add <package>: looks for a package in one of the locations specified by PKG PATH; then down-
loads, unpacks and installs <package>, which can either be a package name (e.g. bison), a local
file (/space/packages/bison-1.35.tgz) or an FTP URL. Dependencies are fetched, unpacked
and installed first, of course.

Notes:

– you can also use HTTP URLs, but dependencies won’t be resolved, as the contents of a
directory can’t be listed through HTTP.

– with plain package names as well as with FTP URLs, you don’t have to specify the full
package name (with version number and .tgz extension); the latest available version will
then be used.

pkg delete [-R] <package>: uninstalls a package. With the -R option, dependencies are also re-
moved unless required by another package.

3

http://www.tac.eu.org/cgi-bin/man-cgi?pkg_info+1+NetBSD-current
http://www.tac.eu.org/cgi-bin/man-cgi?pkg_add+1+NetBSD-current
http://www.tac.eu.org/cgi-bin/man-cgi?pkg_delete+1+NetBSD-current

pkg info [<package>]: lists summary information about all the installed packages If a package name
is specified, shows details about a package.

<package> can either be a package name in short form (e.g. teTeX) or a path to a binary
package file (e.g. ./lang/gcc-2.95.3nb2.tgz), or even a glob pattern on package names.

pkg info -FI <file>: shows which package <file> (absolute path) belongs to.

pkg info -n <package>: shows which package(s) <package> depends upon.

pkg info -R <package>: shows which package(s) depend upon <package>.

4 Notes

4.1 Standard C++ library

Many packages are written in C++, and use the standard C++ library. This usually means they need
to find the libstdc++.so library at runtime, and this library is provided with the gcc package. Even
if you’re only installing binaries and are not going to compile anything, you should install NPCT’s gcc:
C++-written packages don’t have a dependency against gcc (because it’s installed in the base NetBSD
distribution), so they won’t work if you don’t install gcc as well.

4.2 Manual pages

Sun’s man browser toolchain lacks some capability to vew certain GNU or BSD manual pages; occasion-
ally they’ll appear as an ugly blob of text.

Here’s a workaround. You’ll need to have the groff package installed. Let’s say you want to see the
man page for foobar. First, type:

man -d foobar

It should output gobs of text, and finally something like:

unformatted = /usr/pkg/man/man1/foobar.1

Then, the command:

gnroff -mandoc /usr/pkg/man/man1/foobar.1 | less -is

does the trick, and you’ll (hopefully) get a beautiful manual page...

4.3 Non-opensource packages

Some packages (acroread, navigator) are not available from binary repositories because of licencing
restrictions. This packages can still be built and installed from source (instructions follow), and then be
made available on your site’s repository.

Solaris and Sun are trademarks of Sun Microsystems, inc

4

http://www.sun.com/

	Contents
	1 Prerequisites
	2 Quick start
	3 Managing binary packages
	4 Notes
	4.1 Standard C++ library
	4.2 Manual pages
	4.3 Non-opensource packages

